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Abstract

Automatic Modulation Classification (AMC) plays a fundamental role in defense and military
communication systems, particularly in scenarios where adaptability, flexibility, and reliability are
critical. In cognitive radio networks, AMC enables real-time identification of modulation schemes,
which is essential for effective spectrum monitoring, interference mitigation, and secure
communications in dynamic and competitive environments. In this study, we propose a model for
more accurate and robust classification of radio signal modulations by developing a Signal Quality
Adaptive Convolutional Neural Network (SQACNN). The primary goal is to create a model that
adapts to the quality of input signals and mitigates the impact of noise. To this end, an adaptive loss
function is employed to combine cross-entropy loss with regularization factors, including signal
dispersion coefficient, feature compression coefficient, and SNR adjustment factor. Using a
benchmark dataset, the model’s classification accuracy was evaluated across different SNR levels,
demonstrating that the proposed SQACNN model achieves significant improvements in classification
accuracy, with an overall accuracy of 71.03%, while maintaining satisfactory performance particularly
under low SNR conditions. This study highlights the effectiveness of incorporating signal quality
metrics into the learning process, rendering it a valuable tool for real-world signal processing
applications.
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Input: training set D: {(x,,. v ) V-,

Initialization: parameters 6., learning rate a-, batch size M, SNR
threshold y, linear and exponential coefficients 74, 7,.

Training Loop:

1: for each epoch:

2 update the learning rate in Eq. (1-5);

3 for each mini-batch of training data D, = {x;. x,. +--. x} € D:
4: compute F; in Eq. (10);

5: compute F¢ in Eq. (14);
6:

7

8

9

perform forward-propagation through the model;
compute L in Eq. (16-4);
compute gradients;

: update model weights 6;,+;

Output: the trained deep learning model (M).

1. Weight Decay Rate
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